高中数学必修五的公式

高中数学必修五的公式

以下是关于高中数学必修五的公式的介绍

1、数列基本公式:一般数列的通项an与前n项和Sn的关系:an= 等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d(其中a1为首项、ak为已知的第k项)当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。

2、等差数列的前n项和公式:Sn= Sn= Sn= 当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。

3、等比数列的通项公式:an= a1 qn-1 an= ak qn-k(其中a1为首项、ak为已知的第k项,an≠0)等比数列的前n项和公式:当q=1时,Sn=n a1(是关于n的正比例式);当q≠1时,Sn= Sn= 有关等差、等比数列的结论 等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等差数列。

4、等差数列{an}中,若m+n=p+q,则 等比数列{an}中,若m+n=p+q,则 等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等比数列。

5、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。

6、两个等比数列{an}与{bn}的积、商、倒数组成的数列 {an bn}、、仍为等比数列。

7、等差数列{an}的任意等距离的项构成的数列仍为等差数列。

8、等比数列{an}的任意等距离的项构成的数列仍为等比数列。

9、三个数成等差的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,a+d,a+3d 三个数成等比的设法:a/q,a,aq;四个数成等比的错误设法:a/q3,a/q,aq,aq3(为什么?){an}为等差数列,则(c>0)是等比数列。

10、{bn}(bn>0)是等比数列,则{logcbn}(c>0且c 1)是等差数列。

11、2 在等差数列 中:(1)若项数为 ,则 (2)若数为 则,2 在等比数列 中:(1) 若项数为 ,则 (2)若数为 则,数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。

12、关键是找数列的通项结构。

13、分组法求数列的和:如an=2n+3n 错位相减法求和:如an=(2n-1)2n 裂项法求和:如an=1/n(n+1)倒序相加法求和:如an= 求数列{an}的***、最小项的方法:① an+1-an=…… 如an= -2n2+29n-3 ②(an>0)如an= ③ an=f(n)研究函数f(n)的增减性 如an= 在等差数列 中,有关Sn 的最值问题——常用邻项变号法求解:(1)当 >0,d<0时,满足 的项数m使得 取***值.(2)当<0,d>0时,满足 的项数m使得 取最小值。

14、在解含***值的数列最值问题时,注意转化思想的应用。


关于更多高中数学必修五的公式请留言或者咨询老师

  • 姓名:
  • 专业:
  • 层次:
  • 电话:
  • 微信:
  • 备注:
文章标题:高中数学必修五的公式
本文地址:http://52juming.com/show-5438.html
本文由合作方发布,不代表诗界网络立场,转载联系作者并注明出处:诗界网络

热门文档

推荐文档